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The unified formulation of the axisymmetric problem of adhesion between elastic bodies and a method of solving it are presented. 
The adhesion is caused by either the surface energy of the bodies or menisci of fluid present in the contact zone. Both contact 
of the bodies and the case of the separated bodies are analysed. The values of the parameters for which the dependence of the 
load on the change of distance between the bodies becomes non-unique are determined. The loss of energy in an 
approach/separation cycle between the bodies as a function of the basic parameters of the problem is investigated analytically 
and numerically. © 2001 Elsevier Science Ltd. All rights reserved. 

In the classical formulation of contact problems, the stresses are assumed to be compressive in the contact 
area and zero at the free surface of the interacting bodies. Thus, only repulsive forces between the 
surfaces are taken into account. The actual interaction potential between the solid surfaces has both 
a repulsive part and an attractive (adhesion) part, which is associated with the surface energy. 
Consideration of the attractive forces leads to tensile stresses at the boundary of the interacting bodies. 

Contact problems for spherical elastic bodies, taking their surface energy into account, were 
formulated and solved analytically using various simplified forms of the interaction potential in [1-4]. 
A numerical analysis for the Lennard-Jones interaction potential in the exact form was carried out in 
[5]. It was shown that the relation between the force of interaction between the bodies and the distance 
between them is non-unique. This implies that the convergence of the bodies is irreversible and that a 
loss of energy occurs during the approach/separation cycle. 

Not only solid bodies have surface energy but also the fluid films covering them. This can lead to the 
formation of menisci in the gap between the contacting bodies, which give rise to attraction of the surfaces 
- capillary adhesion. The contact of elastic bodies in the presence of capillary adhesion was considered 
in [6-8], and the distribution of the contact pressures, the size of the contact area, and other 
characteristics were calculated. 

1. FORMULATION OF THE PROBLEM 

Consider the interaction between two elastic bodies possessing surface energy. We will assume that the 
bodies are axisymmetric and the shape of their surface can be described by the power function 

f(r) = fl(r)+ f2(r) = Ar 2n 

The bodies are pressed together by an external force q. 
The gap h(r) between the surfaces is given by 

h(r) =f(r) + u(r) + a (1.1) 

where i(r) = ul(r)  + u2(g ) is the total normal displacement of the surfaces of the interacting bodies due 
to their deformation, d is the change in the distance between two fixed points of the interacting bodies 
situated on the axis of symmetry of the bodies and far from the contact surface, as a result of the 
deformation of the bodies. If h(0) > 0, the surfaces of the bodies are not in contact and the value of d 
is positive. If h(0) = 0, the surfaces are in contact over an area [2 c = {r ~< a} (Fig. 1), including point 
contact when a = 0. In this case, the value of d can be both positive and negative. 

In order to take into account the surface energy of the bodies, we consider the area 
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f~a = l O~r<'b' h(O)>O 

[a<~r<~b, h(O)=O 
(1.2) 

where b is a certain distance such that b I> a. We will assume that inside this area the surfaces are acted 
on by a constant negative pressure -P0 caused by their surface energy. 

As a result, we have a contact problem with the boundary conditions 

p(r)=-po, ref~o; h(r)=0, ref~ c (1.3) 

The last condition is the contact condition and occurs only if the surfaces are in contact with each other 
(h(0) = 0). If the surfaces are not in contact (h(0) > 0), the second condition of (1.3) is not included 
in the system of equations describing the problem. 

The equilibrium condition 

b 
q = 27t S rp ( r )d r  (1.4) 

o 

is satisfied in all cases. 
It is also necessary to specify the conditions for determining the quantities P0 and b, which describe 

the adhesive interaction of the surfaces. Within the context of the problem, we can consider two forms 
of interaction between the bodies, taking the surface energy into account. 

Adhesion of dry surfaces. Suppose the molecular interaction between the surfaces is described by the 
Lennard-Jones potential (Fig. 2, curve 1). Following the well-known method [1], we approximate this 
function by a step function (curve 2). The quantity -'P0 then has the meaning of the height of this step 
and the surface energy is defined by the relation 

~[ = 7 p ( z )dz  = poho 
o 
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Fig. 2 
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whence we obtain the condition for determining b 

h(6) = ~/P0 (1.5) 

The parameters of the interaction potential, y and P0 are assumed to be given. 

Capillary adhesion. Suppose there is a fluid in the gap between the bodies, which forms a meniscus 
occupying the area fla. Then the uniform pressurep0 applied to the surfaces in this area is the capillary 
pressure under the curved surface of the fluid, which is defined by Laplace's formula. If the wetting 
angle is zero and b/l <<- 1(l = (2A) q/(z~ - 1) is the characteristic size of the interacting bodies), the 
expression for the capillary pressure reduces to the form [8] 

Po = 2~/h(b) (1.6) 

where a is the surface tension of the fluid. Introducing the notation y = 21, we obtain an expression 
which is of the same form as (1.5). In this case, the value of p0 is unknown. To determine it, we specify 
the volume of fluid o in the meniscus. This volume is related to the geometry of the gap as follows 

v =I I rh(r)drd9 (1.6) 
f l  a 

Hence, to describe the adhesive interaction, we must specify y andp0 for dry surfaces and y and o when 
there is a meniscus. 

To describe the elastic properties of the bodies, we will use the following relation between the normal 
displacements u(r) of the surfaces and the normal pressuresp(r) which holds for axisymmetric contact 
of elastic bodies [9] 

,r, ,K(2 r-~r' "~ r'dr" 

I I-v  
E* El Ez 

where E i and vi (i = 1, 2) are Young's moduli and Poisson's ratios of the bodies, respectively and K(x) 
is the complete elliptic integral of the first kind. 

Thus, the problem of the adhesion between the dry surfaces is defined by the system of equations 
(1.1)--(1.5) and (1.7). The problem of capillary adhesion is described by the system of equations 
(1.1)-(1.6) and (1.7). 

2. DERIVATION OF THE BASIC RELATIONS 

The case when there is no contact. The adhesive interaction between dry surfaces not in contact with 
each other is described by Eqs (1.1)-(1.5) and (1.7), excluding the last condition of (1.3). Substituting 
the first condition of (1.3) into relation (1.7) and taking the integral, we obtain [10] 

4pob IE(p), p<~ I 

u ( p ) = - h E *  LP[E(l/p)_(l_l/p2)K(1/p)],  p>l; p = r l b  
(2.1) 

h ( r ) = d - ~ ,  bE(r )+ Ar 2n 
~E k,b) (2.2) 

taking account into (2.2), we write relation (1.5) in the form 

p o I d - 4 ~ ,  + Ab2n)=y (2.3) 

where E(x) is the complete elliptic integral of the second kind. 
The value of the gap h(r) is determined by substituting relation (2.1) for elastic displacements into 

relation (1.1). As a result, we obtain 
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Moreover, from the equilibrium equation (1.4), it follows that 

q = -rcb2po (2.4) 

Relations (2.3) and (2.4) enable us to determine the force q applied to the bodies and the quantity 
d as functions of  b, the radius of the area in which the adhesion pressure P0 is applied. The solution 
obtained holds for b ~< b*. The quantity b ° corresponds to the case where the surfaces are in contact 
at one point (h(0) = 0). From relation (2.2) when h(0) = 0 and relation (2.3) we obtain the equation 
for b* 

2(n - 2)Pob + Ab2. = ~ (2.5) 
~E* P0 

In the case of  capillary adhesion, we must supplement the relations obtained by the condition that 
the fluid volume (1.6) is constant and take into account the fact that the quantityp0, describing the 
pressure in the fluid is not now specified but is one of the unknown quantities. Substituting expression 
(2.2) for the gap into condition (1.6) and taking the integral, we obtain 

u=Tr, db 2-  1 6  Pob3 + ~ Ab2n.2 (2.6) 
3 E"  n+ l  

Equations (2.3), (2.4), and (2.6) serve to determine the force q, the quantity d, and pressure in the 
fluid P0, as a function of the radius b of the area occupied by the fluid when the surfaces are not in 
contact (b < b*). To find the radius b °, corresponding to point contact in the case of  capillary adhesion, 
we need to solve the system of equations (2.5) and (2.6) forp0 and b. 

The case of contact between the surfaces. To solve the system of equations (1.1)-(1.5) and (1.7), we 
will use the method described previously [8]. As a result, we obtain the following relations: 

For the force applied to the bodies 

(2n)!! a (2.7) q = (2n  + I)'-----~.t. 4E*Ana2n+l -2p°b2(tp+c l~-c2)' c = 

for the change in distance between the bodies, 

d = (2n)!! Aa2, + 2pob ~]1 - c 2 (2.8) 
(2n - I)[! E* 

and also an equation relating the radius b of the contact area to the outer radius b of the area in which 
the adhesion pressurep0 is applied, namely 

4b + [l-c-41-c2~}p2o+y=o, tp = arccosc (2.9) 
gE* 

If the value o fb  is specified, Eq. (2.9) can be solved numerically for a, after which relations (2.7) and 
(2.8) enable one to determine the force q acting on the bodies and the quantity d. 

The solution of the problem of capillary adhesion is also defined by relations (2.7)--(2.9) and, moreover, 
the condition (1.6) that the volume of fluid is constant. By means of the method described previously 
[8], this condition can be reduced to the form 

u = 2 A a 2 n + 2 { ~ 2 - 1 [ ( 2 ~  I)+ n +1 ~1J,=o (2k(2k)P'c-2~n-k) 1 - +  1),, 

__,r , , ] }  c2[(2n_1)!  ! c2 . n+l .  ~ - [4-3c-c3-3~]i-c2g~1 (2.10) 
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Equations (2.9) and (2.10) serve to determine the radius a of the contact area and the pressure in 
the fluid P0, provided that the outer radius b of the area occupied by the fluid is given. After this, the 
values of q and d are calculated from relations (2.7) and (2.8). 

Note that Eq. (2.9), when a = 0, is identical with Eq. (2.5) for b*, corresponding to point contact of 
the surfaces. 

Thus, the solution of the problem of adhesion between dry surfaces is defined by relations (2.3) and 
(2.4) for the case when the surfaces are not in contact (b < b*), and by relations (2.7)-(2.9) for surfaces 
in contact (b > b*), the quantity b ° being bound from Eq. (2.5). The solution of the problem of capillary 
adhesion is given by relations (2.3), (2.4) and (2.6) for the case when the surfaces are not in contact, 
and relations (2.7)-(2.10) for surfaces in contact; the quantity b*, corresponding to point contact, is 
found from Eqs (2.5) and (2.6). 

3. ANALYSIS OF THE DEPENDENCE OF THE LOAD ON THE CHANGE 
IN THE DISTANCE BETWEEN THE BODIES 

The relations obtained were used to analyse the dependence of the force q applied to the bodies on 
the quantity d, characterizing the change in the distance between them. For the adhesion of dry surfaces, 
we specify the parametersA and n, defining the shape of the bodies, the effective modulus of elasticity 
E*, and the characteristics of the potential of molecular interaction, P0 and y. For capillary adhesion, 
we specify the values of A, n, E*, and y = 2or, and also the volume o of the fluid in the meniscus. 

Graphs of the dimensionless load q/(po 12) (l = (2A) -1/(2~-1) is the characteristic size of the interacting 
surfaces) versus the dimensionless quantity d/l are presented in Fig. 3 for the adhesion of the dry surfaces 
for n = 2 and E*/po = 1. The thick lines correspond to contact between the surfaces, and the thin lines 
correspond to no contact. Curves 1 and 2 are constructed for Y/(pol) = I and Y/(pol) = 2, respectively. 
An analysis of the solution shows that the dependence of the load on the change in the distance between 
the bodies is non-unique for any values of the parameters. These results are similar to those obtained 
in [1] for the contact of a parabolic punch with an elastic half-space (n = 1). 

Similar graphs of the dimensionless load q/(E'l z) versus d/l are presented in Fig. 3(b) for capillary 
adhesion for n = 2 and o/13 = 0.05. Curves 1 and 2 correspond to the values y/(E*l) = 0.05 and 
y/(E*l) = 0.1, respectively. In this case, the curves are also non-unique, but only if the dimensionless 
surface tension y/(E*l) is greater than a certain value. 

The graphs in Fig. 3 enable us to analyse the processes of approach and separation for bodies 
possessing adhesion. Consider curve 1 in Fig. 3(a) and curve 2 in Fig. 3(b). If the load q is controlled 
(monotonically reduced), then at the point E corresponding to the minimum load qmin, separation of 
the surfaces occurs suddenly. This effect occurs for any values of the parameters both for the adhesion 
of dry surfaces and for capillary adhesion. At the instant of separation, the surfaces are in contact over 
a finite area. If the quantity d is controlled (monotonically increased), the surfaces suddenly jump from 
point C to point D. When the quantity d is reduced, the surfaces jump from point A to point B. Note 
that points A and D always correspond to the absence of contact between the surfaces, whereas points 
B and C may correspond to both the contact and no contact. Thus, contact between the surfaces can 
be formed and broken suddenly. The sudden contact between the surfaces is illustrated in Fig. 4 for 
capillary adhesion between a punch and an elastic half-space. 
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Fig. 4 

Analysis of the approach/separation cycle shows that the work required to separate the surfaces is 
not equal to the work returned when they come together. The corresponding loss of energy is defined 
by the area of the hatched regions in Fig. 3: 

Aw = ~Aaco q(d)dd (3.1) 

The dependence of the load on the change in the distance between the bodies enables us to investigate 
the loss of energy Aw and the pull-off force qrnin. 

Graphs of the dimensionless loss of energy Aw/(po 13) and the pull-off force qmin/(pol2 ) versus the 
dimensionless surface energy Y/(pol) are presented in Figs 5(a) and (b), respectively, for the adhesion 
of dry surfaces (n = 1, the solid curves). The results show that as the surface energy increases, the loss 
of energy increases and reaches a constant value at a certain value of Y/(p0l). The loss of energy Aw/(po 13) 
is greater for smaller values of E*/po, i.e., for softer bodies. For comparison, graphs for another shape 
of the bodies are presented for E'/po = 2 (the dashed curves). 

Graphs of the dimensionless loss of energy Aw/(E*l 3) versus the dimensionless surface tension y/(E*l) 
are presented in Fig. 6 for the case of capillary adhesion (n = 1, the solid curves). The loss of energy 
is non-zero only if the dimensionless surface tension is greater than a certain value. As the dimensionless 
surface tension increases, the loss of energy increases without limit. Besides, the value of Aw/(E*I 3) is 
greater the smaller volume of fluid in the meniscus. A graph for another shape of the surfaces (n = 2) 
for o/l 3 = 0.05 is also shown (the dashed curve). 

Parabolic bodies. The case when n = 1 corresponds to the interaction of surfaces of parabolic shape. 
In this case, the quantity I is the reduced radius of the surfaces, l - R = (R11 + R2) -1. 

Analysis of the solution of the problem of the adhesive interaction between dry parabolic surfaces 
indicates that the relation between the dimensionless load Q and the dimensionless quantity D defined 
by the relation 

A w/(po Is ) qmin/(po 12) 
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.( 16E "~ 
Q= qnR'y ' D = dl  9~-~-~-R J (3.2) 

is described by a single parameter ~. 

( 9R ~ 

which was first introduced by Tabor [11]. This parameter was also used in [1] when analysing adhesion 
in the contact of dry surfaces. 

The work in the approach/separation cycle, represented in dimensionless form as 

• ( 16E 2 .')~ 
, ) 

is a function of one variable ~. when n = 1. A graph of the function AW(~,) is shown in Fig. 7(a). Relations 
(2.3), (2.4) and (2.7), (2.9) which determine the solution of  the problem for n = 1 become simplified 
and enable an analytical expression to be obtained for the function AW(g) 

8704 ~,5 = ( 9 ~  )~ (3.3) 
A W = 2 4 - ~ 3  when 0~<~,<~,o \ 3 2 )  

As )~ --~ ~ ,  the function AWtends to a constant value, which is obtained analytically and is approximately 
equal to A W ~  = 1.80. It has been shown [1] that the limiting case as )~ ---) 0 corresponds to the Deryagin- 
Muller-Toropov theory of  adhesion, and the case when ~, --> oo corresponds to the Johnson-Kendall-  
Roberts theory. 

The pull-off force qmin can also be represented as a function of one parameter ),, which is similar to 
the result obtained previously [1]. 

3 3 /a / b 
Ww Ww Wf 

o 
0 I ~.,~.w 2 1 2 3 ~l,'qw 

Fig. 7 
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In the case of the capillary adhesion between parabolic bodies, the relation between the 
dimensionless load Q and the dimensionless quantity D (Q and D are defined by (3.2)) is described by 
one dimensionless parameter 

v~R ~ 
q= rE .  ~ 

just as in the case of adhesion for dry surfaces. The dimensionless loss of energy AWspecified by (3.3) 
in this case depends on one parameter ri. A graph of the function AW(rl) is shown in Fig. 7(b). The 
results indicate that the value of AWis non-zero only beginning from a certain value of rl and increases 
without limit as iq increases. 

Note that for the bodies the shape of whose surfaces is described by a higher-degree polynomial 
(n I> 2), one must use two dimensionless parameters to describe the dependence of the load on the 
change in the distance between the bodies (for example, the parameters E/Po, y/(pol) for the adhesion 
of dry surfaces and u/l 3, y/(E'l)  for capillary adhesion, which were used in Fig. 3). 

4. USING THE W INKL E R  MODEL 

The solution of the problem can be simplified considerably if we assume that the elastic properties of 
the bodies are described by the Winkler model. In this case, the normal displacement u(r) of the surfaces 
is related to the applied pressure p(r) by the formula 

u( r )  = kp( r ) ,  k = k, + k2 (4.1) 

where k 1 and k 2 are constants describing the elastic properties of the bodies. Relation (4.1) is an 
approximate analog of relation (1.7). 

Hence, relations (1.1)-(1.5) and (4.1) form a complete system of equations for the adhesion of dry 
surfaces, which relations (1.1)-(1.6) and (4.1) apply for capillary adhesion. For simplicity, we will consider 
the interaction between parabolic bodies, i.e., n = 1. 

Taking (4.1) into account, from Eqs (1.1)-(1.5) we obtain the following relations which hold for both 
the adhesion of dry surfaces and capillary adhesion: 

+d] 
p(r)= k [ 2 R  )' r<~a; u(r)=-kP° '  

a2 = 2R(kPo-d) ,  b2 =a2 + 2Ry I Po 

q = -2toRT + ~(RI k)(d 2 - k2p 2) 

when the surfaces are in contact (h(0) = 0); 

a < r ~ b  

(4.2) 

u(r) = -kpo, 0<~ r<~ b, b 2 = -q/(/r.p0 ) 

q = -2gR't  + 27tRpo(d - kp o) (4.3) 

when the surfaces are not in contact (h(0) > 0). 
In the case of point contact, assuming a = 0 in (4.2), we have 

q* =-2rcR),, d*=kpo. (4.4) 

Relations (4.2)-(4.4) define the solution of the problem in the case of adhesion between dry surfaces. 
To obtain the solution for capillary adhesion, we supplement these relations by the following expressions 
for the pressure in the fiuidp0, obtained from (1.6): 

Po = y(rcRIv )½ (4.5) 

when the surfaces are in contact and 

p2 = _( q Iv )[~/+ q/(47tR)l (4.6) 
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when the surfaces are not in contact. 
Substituting these relations into (4.2)--(4.4), we obtain the solution for the case of capillary adhesion. 
The solutions obtained define the relation between the load q and the quantity d. If we introduce 

the dimensionless variables Q (specified by the first relation of (3.2)) and D = d(/o/) -t/2, the required 
relation will contain only one dimensionless parameter. 

Thus, in the problem of adhesion between dry surfaces, using the parameter 

~'w = Po( k / T) ~ 

we can represent the last relations of (4.2) and (4.3) in the form 

J 2 2 Dw - 2 - k ~ ,  Dw ~< ~,~ 

Q=[2(XwDw-~-I), O~>~, w 
(4.7) 

IfDw <~ ~w, contact between the surfaces occurs. IfD~ > ;~w, the surfaces are not in contact. The case 
when D~ = ~w, Q* = -2 corresponds to point contact. 

For capillary adhesion, substituting (4.5) and (4.6) into the last relations of (4.2) and (4.3), respectively, 
and introducing the dimensionless parameter 

nw = raWcV/o 

we obtain 

Q+2+rlw, Dw ~'q,v 
D~ = I (2+Q-2QrI-Q2n/2) 2 

qwQ Q+4  ' Dw>rlw (4.8) 

If D~ ~< ~w, the surfaces will be in contact, while if D~ > ~w, the surfaces will not be in contact. The 
case when D~ = 1%, Q* = -2 corresponds to point contact between the surfaces. 

Relations (4.7) and (4.8) show that the dependence of the load Q on the quantity D,, is non-monotonic 
and unique for the adhesion of dry surfaces, whereas for capillary adhesion it is non-monotonic and 
non-unique. A comparison between these relations and the solutions corresponding to the exact 
formulation of the problem indicates that the Winkler model gives a relation for the load, which is 
qualitatively correct only for capillary adhesion. For the adhesion of dry surfaces, this relation is in 
qualitative agreement with the exact dependence only for the case of contact between the surfaces. 

On the basis of the above relations between the load Q and the quantity Dw, we obtained relations 
for the dimensionless loss of energy in an approach/separation cycle 

as a function of the parameters ~ and lq w for the adhesion of dry surfaces and capillary adhesion, 
respectively. These relations are shown in Fig. 7. For the adhesion of dry surfaces, the function AWw(~) 
is obtained analytically 

[ 2L3, ~w ~ 1 

AWw=~! (~LXw - 1)(2~L~ +5~,2w - i) + / ,  
kw>l (3 X 3 X. 

This function is close to the function AWQ.) (Fig. 7a) corresponding to the exact formulation of the 
problem only for small 3. w. 

In the case of capillary adhesion, the curve of AWw(Tlw) is qualitatively similar to the curve of AW(q) 
obtained for the exact formulation of the problem. The value of qw, beginning from which the loss of 
energy AWw becomes non-zero is 3~73/4. 
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5. C O N C L U S I O N S  

The interaction between elastic bodies has been investigated both for contact between the surfaces and 
for the case when the surfaces are not in contact. The surface energy of the bodies or of  the fluid films 
covering these bodies is taken into account. The analysis enables us to draw the following conclusions. 

1. For the adhesion of dry surfaces, the dependence of the load on the change in the distance between 
the bodies is non-unique for any values of  the parameters  of the problem. For capillary adhesion, this 
dependence is non-unique only for a certain range of  variation of these parameters.  

2. The loss of  energy in an approach/separat ion cycle increases as the surface energy increases and 
the volume of fluid in the meniscus decreases. The loss of  energy is greater for softer bodies (with smaller 
modulus of  elasticity). 

3. For parabolic bodies, the dependence of the load on the change in the distance between the bodies 
can be described by one dimensionless parameter .  Accordingly, the dimensionless loss of  energy in an 
approach/separation cycle is a function of one paramete r  for both the adhesion of dry surfaces and 
capillary adhesion. I f  the shape of the bodies is described by a power function of higher degree, then 
two dimensionless parameters  are needed to describe these relations. 

4. Using the Winkler model to describe the elastic properties of  the bodies one obtains qualitatively 
correct results for capillary adhesion. For the adhesion of dry surfaces, these results are correct only 
for small values of  the parameter  ~.. 
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